サイエンス・プロジェクト皿(3年SSHクラス)

1 目的

2学年時のサイエンス・プロジェクトⅡで行ってきた課題研究を継続し、R-PDCAサイクルをさらに回すことで研究を深める。また、最終的に研究成果を論文にまとめることで、論理的表現力の伸長を図る。

2 概要

2学年時の課題研究(サイエンス・プロジェクトII)で行ってきた理数分野の課題研究を仕上げた。7月に最終成果発表会を行い、最終的にはそれぞれが論文にまとめた。

(1)活動計画(4月~7月)

口	実施日	内容			
1	4/25	実験、データ分析			
2	5/2	実験、データ分析			
3	5/9	実験、データ分析			
4	5/16	実験、データ分析			
5	6/6	実験、データ分析			
6	6/13	実験、データ分析			
7	6/20	実験、データ分析			
		スライド作成、論文作成			
8	7/11	発表会準備			
		最終成果発表会(3年)			
		2年SSHクラスの発表聴講			

(2) 研究テーマ

2学年時の課題研究 II を継続し、16 テーマ、16 班の班編成で進めた。研究テーマの詳細については次ページに示す。

(3) 課題研究Ⅱからの継続的な取り組み

① SSH メンター事業

コミュニケーションツール「Slack」でメンター の先生と直接やりとりすることで課題研究のア ドバイスを随時受けられる環境を構築した。

② 発表会における発表ルーブリックの導入

研究テーマごとに「学術型」と「開発型」で発表ルーブリックを分けた。発表ルーブリックによる自己評価・他者評価を行った。

③ 指導と評価の一体化

「発表ルーブリック」から「フィードバックシート」を作成し、「文言評価」の候補が客観的に自動生成されるシステムを構築した。その文言評価を教員が最終確認することで、課題研究Ⅲの評価を決定した。

(4)課題研究Ⅲ 最終成果発表会

課題研究Ⅲとして実践してきた課題研究の成果を発表しあう中で、「知の深化」の資質・能力を高めた。また、外部機関と連携して専門家から指導助言をもらった。

(5) 論文作成と外部論文コンテストへの応募

研究終了後、班ごとに研究論文作成を行った。 その研究論文へのフィードバックをかける機会 を設定するため、今年度も全ての班が外部論文コ ンテストへの応募できることを目指し、論文作成 を行った。

実施月	外部発表会名称	応募数
8月	第14回 坊っちゃん科学賞 研究論 文コンテスト (高校部門)	5件
8月	第19回 朝永振一郎「科学の芽」賞 (高校部門	5件
10月	第68回日本学生科学賞	1件

3 成果と課題

(1) 成果

課題研究IIから継続して外部発表機会を増やすことで、R-PDCAサイクルを早く何回も回すことができるようになり、何度も研究内容にフィードバックがかかり、研究の質の大幅な向上が見られた。その結果、「生徒の資質・能力」についてのアンケートで「自身が設定した課題に対して、探究のプロセスであるR-PDCA(調査、計画、実行、検証、改善)サイクルを実践することができる(知の深化:3)」の項目において肯定的な回答が86%であった。

外部論文コンテストについて、最終的に16班中 11班が応募することができた。その結果、昨年と 同等な受賞実績をあげることができた(昨年は6 件、今年は5件)。具体的には、東京理科大学主催 の「第14回坊っちゃん科学賞 研究論文コンテス ト(高校部門)」において、5テーマが応募し、4 テーマが受賞(優良入賞1、入賞1、佳作2)する ことができた。また、筑波大学主催の「第19回朝 永振一郎記念科学の芽(高校部門)」「第68回日本 学生科学賞」惜しくも入賞を逃したが、論文にま とめることができた。また、この中の1テーマは物 理部との連携により、多くのコンテストで優秀な 成績を収めることもできた。成果として、アンケ ート「自身で設定した課題研究に対し、研究報告 書(論文、レポート等)を作成できる(知の交流: 8)」の項目において肯定的な回答が83%であっ た。

(2)課題

メンターとの連携において、学術型、開発型ともに、具体的なやり取りが少なくなってしまい、自分のテーマを深く追究していくことが難しかった。今後もSlackや直接指導を受ける頻度を多くし、効果的な指導の改善が必要だった。

論文コンテストに応募できなかった5つの班について、夏季休業中が提出期限にも関わらず、完成には至らず教員からの有効なフィードバックを得られなかったため、自信をもって応募できなかったことがあげられる。また、研究成果発表会後に新たな多く課題から、論文にまとめるのが困難な状況もあった。今後も応募時期や応募条件が適切な論文賞への応募を検討する。

班	研究テーマ	分野	担当
1	玉入れにおける最適な動きとは~物理エンジンと機械学習による分析~	学術型	岡田
2	匂いの広がり方はモデル化できるのか?	学術型	青木
3	サイコロの出目を予測するには	学術型	岡田
4	3D プリンターを用いたフエラムネの研究	学術型	鈴木
5	無駄のないクイックルワイパーの開発	開発型	青木
6	コマの「ブレード」と衝突時の回転量の増減にはどのような関係があるのか	学術型	岡田
7	EnglishLens	開発型	岡田
8	モニタリングハンター~溺死事故をゼロに~	開発型	鈴木
9	フルタン~古文単語学習アプリ~	開発型	青木
10	100 均のチャンバラ剣はなぜ爆音がなるのか	学術型	鈴木
11	利き足と非利き足のキックの違い	学術型	青木
12	ボールの回転とバウンドの高さの関係性	学術型	岡田
13	テキストマイニングツールを活用した英語長文分析	学術型	青木
14	合同式における指数と底の交換が成立する条件の考察 ~a=3の場合~	学術型	今井
15	ベースギターの奏法と音色の関係	学術型	鈴木
16	ペットボトルキャップの形状と飛距離の関係	学術型	青木